Sevda Allahyari; Shahram Javadi
Volume 05, Issue 01 , February 2016, , Pages 5-9
Abstract
As there is a rapid growth both in the number of power consumers and also the limitations energy resources, it is clearly accepted that the old version of power grid must change into smart grid from head to toe. One of the most important advantages of smart grid which makes it much more exclusive rather ...
Read More
As there is a rapid growth both in the number of power consumers and also the limitations energy resources, it is clearly accepted that the old version of power grid must change into smart grid from head to toe. One of the most important advantages of smart grid which makes it much more exclusive rather than other typical systems is the two-way connectivity between the utility and the costumers. Taking energy efficiency programs for domestic consumers which are considered with the most important role in raising the rate of energy consumption of all, is accepted as an applicable techniques of demand-side management. In this thesis an identical frequency method control of the electrical motor of an air-conditioner (AC) system based on Fuzzy-PID controller is proposed in order to maximizing energy efficiency. Referring to the statistics which are published about the rate of energy consumption of AC systems would have the highest role in demand response and the two-way cooperation between the utility and costumers. To evaluate the results much more applicable, the proposed method is simulated with MATLAB software and the results have shown that the system have the great success.
Heidar Ali Shayanfar; Sajad Malek
Volume 03, Issue 03 , September 2014, , Pages 141-147
Abstract
This paper presents a cooperative control which is applied to the secondary control of a microgrid controlled via a multi-agent scheme. Balancing power that leads to voltage and frequency stability in a microgrid is essential. The voltage and frequency regulations are limiting within the specified limits ...
Read More
This paper presents a cooperative control which is applied to the secondary control of a microgrid controlled via a multi-agent scheme. Balancing power that leads to voltage and frequency stability in a microgrid is essential. The voltage and frequency regulations are limiting within the specified limits and conveying them to their nominal values. Limiting and conveying the voltage and frequency to their nominal values is done by the primary and secondary controls, respectively. A Microgrid has both dispatchable and non-dispatchable sources. Dispatchable sources are controlled by the conventional P-ω and Q-E droop controls. A photovoltaic as a non-dispatchable source generates the active power according to weather conditions, but the reactive power is supplied using the E-Q droop method. The E-Q droop uses the idle capacity of the inverters in the reactive power supply. Distributed secondary control increases the stability due to good, accurate and reliable controls. The frequency is constant in the whole microgrid. Since line impedances are different, load terminal voltage control is necessary. The load is considered as another agent, who can request the desired voltage at its terminal bus.