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Abstract 

A novel method to compute the stability region in power system transient stability analysis is presented. This method is based 

on the set analysis. The key to this method is to construct the Hamilton-Jacobi-Isaacs (HJI) partial differential equation 

(PDE) of a nonlinear system, using which we can compute the backward reachable set by applying the level set methods. The 

backward reachable set of a stable equilibrium yields the stability region of the equilibrium point in power system transient 

stability assessment. The proposed method is applied to a single machine infinite bus system and a classical two-machine 

system yielding satisfactory results. 
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1. Introduction 

Power system transient stability [1] is related 

to the ability to maintain synchronism when subject 

to a severe disturbance, such as a short circuit on 

the bus. The resulting system response involves 

large excursions of generator rotor angles and is 

influenced by the nonlinear power-angle 

relationship. Transient stability assessment 

essentially determines whether the post-fault 

operating state can reach an acceptable steady-state 

operating point or not. The conventional method to 

determine transient stability is to integrate the 

system equations to obtain a time solution of the 

system variables, for given system operating points 

and contingencies. The alternative method is to 

determine stability directly [2]. The prerequisite of 

the direct methods is to find the stability region. For 

a general nonlinear autonomous system, the 

stability region is defined as the set of all points 

from which the trajectories start can eventually 

converge to the stable equilibrium point (SEP) as 

time approaches infinity [3]. We can determine the 

stability of a post-fault power system by checking 

whether the fault-on trajectory at clearing time lies 

inside the stability region of a desired stable 

equilibrium point of the post-fault system. If so, it 

is guaranteed that the resulting post-fault trajectory 

will converge to the SEP regardless of the 

transients of the post-fault trajectory. Therefore, 

knowledge of the stability region of a SEP is 

sufficient for the direct transient stability 

assessment.  

In the last three decades numerous efforts 

have been undertaken to determine the stability 

region with the goal of power system transient 

stability analysis. The studies of [4], [5], [6], [7] 

provide the theoretical foundations for the 

geometric structure of the stability region. The 

authors in [6] prove that the stability boundary of a 

SEP is the union of the stable manifolds of the type 

one unstable equilibrium points and propose a 

numerical algorithm to determine the stability 

region. As the authors indicate, finding the stable 

manifold of an equilibrium point is difficult. For a 

planar system, a procedure is suggested in the same 

paper to numerically determine the stable manifold. 

However, for higher dimensional systems, the 

proposed procedure can only find a set of 

trajectories on the stable manifold. Recently, some 

algorithms have been developed to approximate the 

stable manifold of an UEP. For example, in [8], [9] 
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the Taylor expansion is used to get a quadratic 

approximation and in [10], [11], the stable 

manifolds around an UEP are approximated by the 

normal form technique and the energy function 

methods [12]. A well-known alternative method 

called the closest unstable equilibrium point 

method [2] find a subset of the true stability region 

and thereby not to obtain the stable manifold of an 

UEP. The closest unstable equilibrium point 

method uses the constant energy surface passing 

through the closest UEP to approximate the 

stability boundary. It is shown in [13] that the 

stability region estimated by the closest UEP 

method is optimal in the sense that it is the largest 

region within the stability region which can be 

characterized by the corresponding energy function. 

However, the closet UEP method can give very 

conservative results for stability region 

approximation. In [14], the authors apply the 

singular perturbation theory to decompose a 

particular power system into slow and fast 

subsystems based on the assumption that a power 

system can be perfectly separated in time-scale. 

Then the stability region of a SEP is obtained by 

numerical simulation.  

Our paper presents an alternative method to 

determine the stability region based on reachability 

analysis. Given a stable equilibrium point of a 

nonlinear autonomous system (such as a power 

system), our method can accurately compute the 

stability region of this SEP, without the information 

of the unstable equilibrium points.  

The paper is organized as following. Some 

fundamental concepts of the reachable set analysis 

are introduced in Section 2. In Section 3 a new 

algorithm to determine the stability region of a SEP 

is proposed. In Section 4 the algorithm is applied to 

power system transient stability assessment. The 

effect of a certain damping ratio on the stability 

region is also investigated in this section. Section 5 

provides conclusion. 

2. Rechargeable Set and Its Characters 

Reachable sets are a way of capturing the 

behavior of entire groups of trajectories at once. 

There are two basic types of reachable sets, 

depending on whether an initial or a final condition 

is specified. The forward reachable set is defined as 

the set of all states that can be reached along 

trajectories that start in a specified initial set. On 

the other hand, the backward reachable set is the set 

of states where trajectories can reach the specified 

target set. The backward and forward reachable sets 

are shown in Fig. 1. In section 3, we will make use 

of backward reachable sets to computer the stability 

region of a stable equilibrium point of a nonlinear 

system. 

target set

State space

forward 

reachable set
initial set

State space

backward 

reachable set

 

Fig. 1.  Illustration of backward and forward reachable sets 

One way of describing a subset of states is via 

an implicit surface function representation. 

Consider a closed set
nS R . An implicit surface 

representation of S would define a function 

( ) : nx R R   such that ( ) 0x   if x S  

and ( ) 0x   if x S . In [15], the author 

formulates the backward reachable set in terms of a 

Hamilton-Jacobi-Isaacs (HJI) PDE, and proves that 

the viscosity solution of this PDE is an implicit 

surface representation of the backward reachable 

set. This HJI PDE can be solved with the very 

accurate numerical methods drawn from the level 

set literature [16].  

Consider an autonomous system described by 

an ordinary differential equation: 

)(xf
dt

dx
  (1) 

where 
nx R  is the state vector and f(x) is 

the vector field.  

Suppose ),( tx  is the level function to 

describe the backward reachability set at time t . 

0),( tx  is a surface in )1( n  dimensional 

space. The surface 0)0,( x  is the boundary of 

the “target set”, whereas the surface 0),( tx  is 

the boundary of the set of all states nRx where 

the target set can be reached in time t  or less. 

Consider the surface 0),( tx in the )1( n  

dimensional space. For every ),( tx on this surface 

the  value is zero. So if we make a small variation 

along this surface, i.e., move to a neighboring point 

),( dttdxx   also lying on the surface, then the 

variation in valve   will be zero: 

0),(),(  txdttdxxd   (2) 

0)(

1

1


















dtdxx

dt
t

dx
x

dx
x

d

t

T

x

n

n




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From this it follows that, 

0 t

T

x
dt

dx
  (4) 

Substitute (1) to (2), it follows that; 
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0),(  t

T

x txf   (5) 

Thus we obtain the desired PDE and this PDE 

propagates the boundary of the backward 

reachability set as a function of time. 

Level set methods are a collection of 

numerical algorithm for approximating the 

dynamics of moving curves and surfaces. Given a 

target set defined by an implicit surface function

0( , )x t , we use level set methods to solve the HJI 

PDE and thus compute the backward reachable set. 

3. An Algorithm to Determine Stability Region 

Section 2 provides an introduction to the 

concepts of the reachable sets and their 

computation using HJI PDE. Here we apply the 

reachable set analysis for the determination of 

stability region in power system transient stability 

assessment. Given a post-fault stable operating 

point, exist an open neighborhood of it that is 

contained in the stability region. We pick a 

sufficiently small ball around the SEP as the 

target set. The backward reachable set with this 

target set gives the stability region of the post-fault 

SEP. We check state at the fault clearing time in 

this backward set in which case system will 

eventually reach stable operating point. Otherwise, 

the system will remain unstable. The following 

algorithm summarizes the procedure to determine 

the stability region of post-fault power system. 

Step 1: Form the state space equations of the post-

fault power system, )(xf
dt

dx
 . 

Step 2: Find the stable equilibrium point of this 

autonomous nonlinear system, by solving 0)( xf  

and let nRx *  be a SEP. 

Step 3: Specify a  -ball cantered at the stable 

equilibrium point with sufficiently small radius  . 

Define an implicit surface function at time 0t  as 

  *)0,( xxx  (6) 

Then the target set is the zero sublevel set of the 

function )0,(x , i.e., it is given by: 

 0)0,(|  xRx n   (7) 

Therefore, a point x is inside the target set if 

)0,(x  is negative, outside target set if )0,(x  is 

positive, and on the boundary of the target set if 

)0,(x . 

Step 4: Propagate in time the boundary of the 

backward reachable set of the target set by solving 

the following HJI PDE: 

0),(  t

T

x txf   (8) 

With terminal conditions: 

  *)0,( xxx  (9) 

The zero sublevel set of the viscosity solution 

( , )x t  to (6), (7) is the backward reachable set at 

time t : 

 0),(|  txRx n   (10) 

Step 5: The backward reachable set of the  -ball 

around the stable equilibrium point is computed 

using software tool [18]. It is always contained in 

the stability region of the stable equilibrium point. 

And t  goes to infinity, the backward reachable set 

approaches the true stability region. If the stability 

region is bounded, the level set based numerical 

computation of the backward reachability set 

eventually converges to the stability region within a 

finite computation time. 

4. Examples 

A)  A Single-Machine-Infinite-Bus Model 

The classical single-machine-infinite-bus 

model of power systems is shown in Fig. 2. The 

system model is given as follows: 




dt

d  (11) 

  

  
 

 

 
      

          (12) 

Here,  is the machine rotor angle and   is 

the angular velocity of the rotor. Suppose the 

inertial constant radsTM J /026.0/ 2

0   , and 

0.1mP  per unit, 35.1/'  XUEPM

e
 per unit. 

 

jX

'E 

0U

 
Fig. 2. A single-machine-infinite-bus model 

From the system equations (11) and (12), and the 

chosen parameter values, the point (0.8324, 0) is 

identified to be the unique stable equilibrium point 

of this system. We set the target set as 

1.0)8324.( 22   , and choose the damping 

coefficient D to be 0.12 s/rad. On a standard laptop, 

the backward reachable set computation converges. 

The stability region lies inside the solid line drawn 

in Fig.3. From this figure, we can conclude that if 

the post-fault initial condition of the state variables 

is inside the stability region, the trajectories will 

converge to the stable operating point. And if the 

initial condition is outside the stability region, the 

system will remain unstable. We validate our result 



International Journal of  Smart Electrical Engineering, Vol.5, No.3,Summer2016                    ISSN:  2251-9246  
EISSN: 2345-6221  

172 

by drawing the corresponding phase portrait, using 

some time domain simulation of sample 

trajectories, from which we can see that our method 

can precisely determine the stability region.  

In addition, when the damping coefficient D  

is increased, the stable equilibrium point remains 

the same as (0.8324, 0). For 15.0D , we compute 

the stability region as shown in Fig. 4. The 

computation terminates in 5.14 seconds on a 

slandered laptop. The figure clearly shows that 

when D is increased, the size of the stability region 

also increases. The observation is validated by time 

domain simulations. Again, figures 5 and 6 give the 

time domain responses of the rotor angle and 

velocity for an initial condition 
0 0( , ) ( 5,15)     

when D is 0.12 s/rad and 0.15 s/rad, respectively. 

Fig. 6 shows the trajectories eventually settle to the 

post-fault stable operating point. However, when D 

is 0.12 s/rad, the system loses stability for this 

initial condition as shown in Fig. 5. This is not 

unexpected since a large D reduce implies a larger 

stability region. 

B) A Classical Two-Machine Model 

A simple power system containing two 

generators is shown in Fig. 7. The classical model 

of the post-fault system is as following: 
   

  
     

   

  
                 

                                  
        

(13) 

 

where 
1 1 2x     is the angular difference between 

the two generators, and 
2 1 2x     is the angular 

velocity difference between the two generators. In 

this system, the origin is a stable equilibrium point, 

(2.393539, 0) and (-3.889646, 0) are saddle points. 

This can be confirmed by linearization. Most of the 

previous calculation of the stability region of this 

two-machine system is of the form shown in Fig. 8 

[17]. The computation by the present method is 

shown in Fig. 9. Here, we chose the radius of   

ball to be 0.1 and after 25.8 seconds’ computation 

time we obtained the stability region. This figure 

also shows the phase portrait of the system. It is 

clear that the computed stability region closely 

matches the result of the phase portrait.  

5. Conclusion 

A novel method for computing the stability 

region of nonlinear system, such as power systems 

is presented in this paper. The proposed method has 

the following advantages: 

 It computes the stability region accurately. For 

large systems, the computation may be stopped 

after a certain time to get a sub region. 

 It is easy to implement. We only need to form 

the mathematic model of the post-fault power 

system and identify the stable equilibrium 

point. After then, we can use level set methods 

to compute the stability region as a backward 

reachable set. 

 

 
Fig. 3. Stability region and phase portrait fro D=1.2 s/rad 

 

 

Fig. 4. Stability region and phase portrait for D=1.5 s/rad 
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Fig. 5. Time domain simulation when D is 0.12 s/rad 
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Fig. 6. Time domain simulation when D is 0.15 s/rad 
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Fig. 7. Two-machine power system. 
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Fig. 8. Prior approximation of the stability region 

 

Fig. 9. Our computation of stability region and phase portrait  
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