A Flexible Link Radar Control Based on Type-2 Fuzzy Systems

Document Type: Research Paper

Authors

Telecommunication Company of Iran, Ilam, Iran

Abstract

An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very similar to ANFIS but in ANFIS2 a layer is added for purpose to type reduction. An adaptive learning rate based backpropagation with convergence guaranteed is used for parameter learning. Finally the proposed ANFIS2 are used to control of a flexible link robot arm that can be used in radar. Simulation results shows the proposed ANFIS2 with Gaussian type-1 fuzzy set as coefficients of linear combination of input variables in the consequent part has good performance and high accuracy but more training time, so radar system can be controlled very well.

Keywords