A New Control Method for Smoothing PMSG-Based Offshore Wind Farm Output Power

Navid Ghardash khani *
Department of Electrical Engineering, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran. Email: navid_gh@aut.ac.ir

Abstract

Nowadays, propagation of wind turbines makes challenges to supply safe power to the grid. Because of wind speed changes, supervisors are concerned to wind turbines, be able to produce appropriate electric power during the wind speed changes. As a matter of fact, investors are mostly like to invest on offshore wind farms, because of their more stable and continuous wind speed rather than onshore ones. Although offshore wind farms are more reliable than onshore ones, their power control is a very important issue. In this paper a method is presented to control wind farms output power. This method is able to fix wind farm output power even during the wind speed changes. On the other hand by this method, the wind farm is able to operate such as a PV BUS. The proposed wind farm configuration and control system is validated by simulation on MATLAB/Simulink software. We also formulate and model the wind turbine, VSC converters of HVDC link and the PMSG generator. Moreover they are modeled and simulated on d-q frame by MATLAB/Simulink.

Keywords: WECS (Wind Energy Conversion System), PMSG (Permanent Magnet Synchronous Generator), MPPT (Maximum Power Point Tracking), VSC (Voltage Source Converter),CSI (Current Source Inverter).

Article history: Received 11- JUL-2017; Revised 24- JUL-2017; Accepted 11-SEP-2017.
© 2017 IAUCTB-IJSEE Science. All rights reserved

1. Introduction

Nowadays lots of wind turbines are using around the world because of their compatibility with the environment. It is expected that the wind turbines usage will propagate on the near future. This will cause important considerations in technical issues in wind farms connection to the grid [1]. WECSs are based on several technologies, such as DFIGs and PMSGs. Today, the PMSG-based WECS usage has spread out because of their significant advantages such as no need of excitation, low volume and weight and high precision [2]-[5]. In [6], authors have proposed a configuration and control method, based on rectifying each turbine power by a diode rectifier and using a DC-DC converter right after each wind turbine. By series connection of wind turbines, and controlling the duty cycle of DC-DC converter, power control of the wind farm is being achievable. Also this method has some advantages such as no need of transformer and the ability of maximum power point tracking (MPPT). Although this method has many advantages, it has some disadvantages such as low reliability. Moreover, outage of each wind turbine can cause variations on HVDC link and decreasing of wind farm output power, instantaneously. In [7], a new configuration is proposed based on series and parallel connection of wind turbines, using CSIs. This configuration is suitable for numerous wind turbines connection. In this method, wind farms power control is not accurately. Moreover wind turbines outage may cause interrupts in power production. Similarly in reference [8], authors have proposed a configuration use parallel and series connection of wind turbines. This configuration benefits VSCs connection with HVDC link. The proposed system has the advantages and disadvantages of system proposed in reference [7]. In references [9] and [10] authors have suggested using energy storage systems (EES) such as SMES (Super conducive Magnetic Energy storage System) and flywheel to mitigate fluctuations of power produced by the wind turbine. Although their simulation results illustrate these systems can smooth wind power variations, the amount of energy stored in
EESs is limited and is not suitable for large changes in wind speed. In reference [11] authors benefit wind speed prediction for power smoothing of wind turbines. Although this method is mostly useful for power smoothing, there is not appropriate control on extracted power from the wind farm in this method. There are different topologies and control systems for wind farms connected to the grid via HVDC link [12]-[13]. In reference [12], different MTDC (Multi Terminal DC) connections of wind turbines with their advantages and disadvantages have been analyzed. In reference [13], wind turbines connected to the grid by CSIs, based on series parallel and their different combinations have been analyzed.

The aim of this paper is to propose a new configuration of offshore wind turbines using HVDC-light link to control and fix wind farm output power during wind speed changes.

The organization of this paper is as follows: On the next section, the model of the wind conversion energy system (WECS), based on PMSG, is presented. Furthermore, modeling and control of PMSG using vector control is analyzed on this section. On the third section, a configuration of the offshore wind farm, connected to the onshore grid by HVDC cable is presented. Also its control method is proposed and analyzed. Fourth section discusses the simulation results of the proposed system by MATLAB/Simulink and finally the paper’s main results are summarized on the conclusion section.

2. Wind Energy Conversion System

The wind energy conversion system (WECS), used in this paper includes the wind turbine, PMSG, HVDC-light link, its VSC converters and transformers. In this system, the wind energy is extracted by wind turbine and transmitted to a three phase PMSG by a constant ratio gear box which converts the mechanical power into electrical one and finally transmitted by a HVDC-light link, connected to the grid. Table1 illustrates the parameters of wind turbine and generator.

![Table 1. Parameters of wind turbine and generator](image)

![Table 2. Wind turbine coefficients and parameters](image)

A) Wind turbine modeling

The turbine wind power \(P_{\text{Extracted}}\) and mechanical torque \(T_m\) modeling are described by (1)-(3), [4-15].

\[
P_{\text{Extracted}} = \frac{1}{2} C_p(\lambda, \beta) \rho A V_w^3
\]

\[
\lambda = \frac{w_c R}{V_w}
\]

\[
T_m = \frac{P_{\text{Extracted}}}{w_t}
\]

where, \(C_p(\lambda, \beta)\) is the aerodynamic efficiency of the wind turbine, which is depended on the tip speed ratio and pitch angle of the wind turbine. This efficiency is related to \(\lambda\) and \(\beta\) by following equations. Although pitch angle control system is a conventional method in wind turbine systems, it has low dynamic response and is not sufficient enough to cooperate in fast output power of wind turbines changes [16]. As a matter of fact, in the proposed method, \(\beta\) is suggested to maintain constant and is operated at zero [17].

Figure 1 illustrates the \(C_p(\lambda, \beta)\) curve for three types of pitch angels.

\[
C_p(\lambda, \beta) = C_1(\frac{1}{\lambda} - C_2 C_3 - C_4 e^{\frac{C_5}{\lambda}})
\]

where, \(A\) is given by (5).

\[
\frac{1}{A} = \frac{1}{\lambda + C_6 \beta^2} - \frac{C_7}{1 + \beta^2}
\]

The coefficients \(C_1 - C_8\) are different for wind turbines and are selected as listed table 2 [15].

![Fig. 1. \(C_p(\lambda, \beta)\) Curve.](image)

B) PMSG d-q modeling
Permanent magnet synchronous generator (PMSG) is one of the conventional generators used in wind turbine systems. In the follows, modeling of this type of generator in d-q frame is proposed [17-18]. By using figure 2, the direct and quadrature voltage of the stator can be written as (6).

\[v_d = \frac{[u_d - \omega L_s q]}{L_s} + \frac{R_s}{L_s} [i_d] + \frac{-L_s p w}{L_s} [i_q] \]

where \(p \) is Laplace differential operator. In PMSG which is not a salient pole machine, we have, \(L_d = L_q \) = \(L_s \). So:

\[\frac{d}{dt} \lambda_s = v_s - R_s i_s \]

(6)

\[d (\lambda_{dq}) e^{j\omega_s t} = V_{dq} - R_s i_q e^{j\omega_s t} \]

(7)

\[\frac{d}{dt} \lambda_q = \begin{bmatrix} 0 & w_s \\ -w_s & 0 \end{bmatrix} \lambda_q + \begin{bmatrix} -R_s & 0 \\ 0 & -R_s \end{bmatrix} i_q + \begin{bmatrix} v_d \end{bmatrix} - \begin{bmatrix} v_q \end{bmatrix} \]

(8)

The electrical power of the machine can be determined by the following equations.

\[P = \frac{3}{2} R_s \left(i_d^2 + i_q^2 \right) + \frac{3}{2} \left(\alpha_{dq} \frac{d}{dt} i_q + \beta_{dq} \frac{d}{dt} i_q \right) + w_s \frac{3}{2} \left(\alpha_{dq} \lambda_q - \beta_{dq} \lambda_q \right) \]

(9)

\[P = \frac{3}{2} R_s \left(i_d^2 + i_q^2 \right) + \frac{3}{2} \left(\alpha_{dq} \frac{d}{dt} i_q + \beta_{dq} \frac{d}{dt} i_q \right) + \frac{3}{2} \left(\lambda_{dq} \lambda_q - \lambda_{dq} \lambda_q \right) \]

(10)

The electromagnetic torque can be deduced by (11).

\[T_e = \frac{P}{w_e} = \frac{3}{2} p \left(\alpha_{dq} \lambda_q - \beta_{dq} \lambda_q \right) \]

(11)

\[T_e = \frac{3}{2} p \left(\alpha_{dq} i_q + \left(L_d - L_q \right) \beta_{dq} i_q \right) \]

(12)

\[T_e = \frac{3}{2} p \left(\alpha_{dq} i_q \right) \]

(13)

C) VSC average model and its control

In this section, the modeling of the VSC is presented. It is connected to PMSG in order to control the torque, power and rotational speed. Figure 3 illustrates the circuit of this system [18-19].

Fig. 2. PMSG schematic

Fig. 3. Model of the VSC.

In Figure 3, we have:

\[L \frac{d}{dt} i_a + R_i i_a = V_{ta} - U_s \]

(14)

\[L \frac{d}{dt} i_b + R_i i_b = V_{tb} - U_s \]

where, \(V_{ta}, V_{tb}, V_{tc} \) are output voltages of VSC. By using Fourier’s series of these periodical voltages, the (15) can be rewritten as follows.

\[L \frac{d}{dt} i_a \left(-U_s \right) + \frac{1}{T_{c \tau}} \int V_{ta}(\tau) d\tau + \sum_{m=1}^{\infty} \left[a_m \cos(mw_c \tau) + b_m \sin(mw_c \tau) \right] \]

(15)

\[L \frac{d}{dt} i_b \left(-U_s \right) + \frac{1}{T_{c \tau}} \int V_{tb}(\tau) d\tau + \sum_{m=1}^{\infty} \left[a_m \cos(mw_c \tau) + b_m \sin(mw_c \tau) \right] \]

where, we have:

\[a_m = \frac{2}{T_{c \tau}} \int V_{ta}(\tau) \cos(mw_c \tau) d\tau \]

(16)

\[b_m = \frac{2}{T_{c \tau}} \int V_{ta}(\tau) \sin(mw_c \tau) d\tau \]

Equation (16) is a set of differential equations which has one AC and one DC response. Although by using the superposition law, these two components can be separately analyzed, the AC component is negligible if the switching frequency is too larger than \(R/L \). Therefore, (16) can be rewritten as follows:
For a sinusoidal PWM, (18) can be rewritten as bellow:

\[
\begin{align*}
L\frac{di_a}{dt} + R_i &= (-U_a + m_a \frac{V_a}{2}) \\
L\frac{di_b}{dt} + R_i &= (-U_b + m_b \frac{V_b}{2}) \\
L\frac{di_c}{dt} + R_i &= (-U_c + m_c \frac{V_c}{2})
\end{align*}
\]

These equations can be illustrated as Figure 4.

![Control Block diagram of VSC.](image)

3. Proposed configuration of wind turbines and their control system

As discussed on the introduction, there are different configurations on the wind turbines connection in wind farms. Although these configurations have appropriate advantages, they are not suitable enough to control the output power of the wind farm accurately. To overcome this problem, following configuration is proposed to control wind farm operation modes. The power control mode is achievable by controlling \(\mathbf{i}_{q_{ref}}\) operated to VSCs as discussed in the bellow. Following equations analyze this operation condition.

\[
\lambda_{opt} = \frac{\omega_{tur}}{V_w}
\]

\[
V_w = \frac{R_{omega}}{\lambda_{opt}}
\]

\[
P_{opt} = \frac{0.5 \rho A R^3 C_{p,\max}}{\lambda_{opt}^3} W_{aw}^3
\]

By dividing output power to the rotational speed, electromagnetic torque is achievable [17].

\[
T_{opt} = \frac{0.5 \rho A R^3 C_{p,\max}}{\lambda_{opt}^3} W_{aw}^2
\]

\[
P_{opt} = Kw_{aw}^3
\]

\[
T_{opt} = Kw_{aw}^2
\]

\[
K_{opt} = \frac{0.5 \rho A R^3 C_{p,\max}}{\lambda_{opt}^3}
\]

By using (14) and the above equations, \(\mathbf{i}_{q_{ref}}\) can be calculate as bellow.

\[
\mathbf{i}_{q_{ref}} = \frac{1}{n_{Gear}^2 p_{km}} \frac{\tau}{n_{Gear}^2 p_{km}}
\]

\[
\mathbf{i}_{q_{ref}} = -\frac{1}{\frac{3}{2} p_{km}} T_{opt} = -\frac{1}{\frac{3}{2} p_{km}} \frac{1}{2} \rho A(R^3)C_{p,\max} W_{aw}^2
\]

\[\mathbf{i}_{q_{ref}}\] is applied to each VSC to control wind turbines operate at maximum power point. While the
purpose of control is power control of a wind turbine, $i_{q\text{ref}}$ should be operated as bellow:

$$i_{q\text{ref}} = \frac{1}{\kappa_{\text{Gear}}} \frac{P_{\text{applied}}}{\frac{1}{2} \rho A V^3 C_{\text{opt}}}$$ (28)

As discussed before, to produce constant output power of wind farm, we have to set $P_{\text{power control}}$ as bellow:

$$P_{\text{Desired}} = (n-j)P_{\text{MPP}} + P_{\text{power control}}$$ (29)

$$P_{\text{power control}} = j \cdot P_{\text{applied}}$$ (30)

$$P_{\text{MPP}}(V) = \frac{1}{2} \rho A V^3 C_{\text{opt}}$$ (31)

$$P_{\text{applied}}(V) = \frac{P_{\text{Desired}}(n-j)P_{\text{MPP}}(V)}{j}$$ (32)

$$P_{\text{applied}} \leq P_{\text{MPP}}$$

If, $P_{\text{applied}} > P_{\text{MPP}}$, j should be increased.

As wind speed (V) can be varied, consequently $P_{\text{applied}}(V)$ is variable. By combining (29) and (33), $i_{q\text{ref}}$, which should be applied to VSC, is calculated as follows.

$$i_{q\text{ref}} = \frac{1}{\kappa_{\text{Gear}}} \frac{P_{\text{Desired}}(n-j)P_{\text{MPP}}(V)}{\frac{1}{2} \rho A V^3}$$ (33)

4. Simulation Results

In this section, simulation is applied on 100 wind turbines. The simulation results are illustrated and analyzed as bellow. In the simulations the value of j and N are assumed to 20 and 100, respectively. Moreover, the P_{Desired} is set to 220 MW.

Figures 6 and 7 illustrate the wind speed and P_{applied} of power control turbines, respectively. Figure 8 shows the output power of turbines, operating at MPPT mode.

Figure 9 illustrates the efficiency of wind turbines, operate in MPPT mode. The power efficiency is fixed to its maximum value by this algorithm. Also figure 10 illustrates the efficiency of power control wind turbines.

Figures 11 and 12 illustrate I_d and $I_{d\text{ref}}$ of MPPT and power control wind turbines, respectively. Figure 13 and 14 illustrate I_q and $I_{q\text{ref}}$ of MPPT and power control turbine, respectively.

Figure 15 shows the output power of wind farm, using the proposed method. Although the variation of wind speed is such as a noise, the total output power of wind farm is reinstated by the proposed algorithm. On the MPPT mode, all of the wind turbines operate at the maximum power point and the power control wind turbines controls the wind farm output power.

