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Abstract 

The state estimation of a quantized system (Q.S.) is a challenging problem for designing feedback control and model-based 

fault diagnosis algorithms. The core of a Q.S. is a continuous variable system whose inputs and outputs are represented by 

their corresponding quantized values. This paper concerns with state estimation of a Q.S. by a qualitative observer. The 

presented observer in this paper uses a non-deterministic automaton as its qualitative model and estimates quantized values 

of the system state. Observer inputs are on-line measured input and output signals of Q.S. The previous proposed qualitative 

observers use dynamics of the continuous variable system of Q.S., whereas in this paper, the qualitative observer model is 

built by a quantitative observer. The main theorem of the paper shows that if the parameters of quantitative observer and 

sampling time are chosen correctly, then qualitative estimation error will be uniformly ultimate bounded, i.e. it will converge 

to a bounded convex set. In addition, simulation results show that reducing bounds of the convex set, results in less 

additional generated spurious states. 
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1. Introduction 

An interesting area of recent researches in 

hybrid systems has been devoted to the Fault 

Detection and Isolation (F.D.I.) for hybrid systems. 

Hybrid systems involve the interaction of time-

driven dynamics with event-driven dynamics and 

provide a convenient framework for modeling 

systems in a wide range of engineering applications 

[15].  

The main part of a model-based FDI procedure 

is the generation of residuals which reflect the 

discrepancy between two different faulty modes. 

One of the general approaches for residual 

generation is observer-based approaches [4]. Due to 

mixed behavior of hybrid systems, using state 

observers for these systems is more complicated and 

some solutions are proposed in literature [1, 13]. In 

some of the other solution approaches, the system is 

considered as Q.S. whose qualitative model is used 

to build qualitative observer [2, 3, 10, and 11].  In 

comparison with these approaches, Fig. 1 illustrates 

the idea of our qualitative observer for Q.S. The 

qualitative state observer estimates consistent states 

with observed input and output sequences. A non-

deterministic automaton (N.D.A) is used for 

discrete-event description of the qualitative state 

observer. The N.D.A describes a relation between 

qualitative input sequences (denoted by ][U ) and 

qualitative output sequences (denoted by ][Y ) (c.f. 

section 2 for further details). This observer must 

have a complete model. A qualitative model is 

complete when it can generate all output sequences 

that the quantized system may generate for all input 

sequences [11].  

The qualitative observers presented in the 

literature, use different qualitative models such as 

N.D.A., stochastic automaton, timed automaton and 

Petri nets [5, 7, 8, 10].In all of these observers, 

dynamics of the continuous variable system of Q.S. 

is used to build the qualitative model of the 

observer. In this paper, the qualitative model of the 

observer is constructed based on an asymptotically 

stable observer. By this modification, it is shown 

that qualitative estimation error (Q.E.E.) can be 

converted to a bounded convex set. In [3], it is 

shown that if the model of qualitative observer is 

complete, then the actual system state exists in the 

set of estimated states. But convergence of Q.E.E. is 

not discussed completely. In this paper, it is shown 

that if the quantitative observer is asymptotically 
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stable and the sampling time of quantizer is chosen 

properly, then Q.E.E of qualitative observer 

converges to a bounded convex set. In addition, 

simulation results show that the bounds of the 

convergence set can be reduced by varying the 

design parameters of the quantitative observer and 

sampling time. Also, reduction   of Q.E.E. results in 

less additional generated spurious states, which in 

turn, increases the performance of F.D.I algorithms 

for hybrid systems. 

 

Fig. 1. Qualitative state observer. 

Since the mentioned method is based on 

qualitative modeling, qualitative model 

representation of Q.S. and the qualitative state 

estimation is described briefly in section 2.  In 

section 3 a brief review of Luenberger state 

observers is given and then some basic definitions 

and conditions for convergence of Q.E.E are 

presented.  For more illustration, the proposed 

observer is applied on a two-tank system in section 

4. By simulation results, the effect of sampling time 

and quantitative observer parameter variations on 

Q.E.E is investigated.  

2. Qualitative Observer 

Since qualitative models are used for 

qualitative observer, this section gives a brief 

description of the qualitative modeling of a 

continuous-variable discrete-time system [6]. 

Furthermore, the qualitative state observation task is 

given at the end of this section. References [3, 6, 

11], are useful for further details.    

The core of a Q.S. is a continuous-variable 

discrete-time system which is defined as follows 

(c.f. Fig. 1):  

( ) ( ( ), ( )k +1 k kcx f x u  , (0)
0

x x  

( ) ( ( ), ( )),k k kcy g x u  
(1) 

 

where ( ) nk x R denotes the system state, 

( ) mk u R denotes the system input , and ( ) rk y R  

denotes the system output. 

The state quantizer introduces a partition of the 

state space n
R  into a finite number of disjoint sets 

( )xQ i , { }xi N 0,1,...,N  . The qualitative value 

of the state ( )kx  at time k is given by the index i of 

the set ( )xQ i  to which the state belongs 

[ ( )] ( ) ( )k i k Q ix  x x   (2) 

In a similar manner the output quantizer introduces 

a partition of the output space 
r

R into a finite 

number of disjoint sets 
( )yQ j

,
{ }yj N 0,1,...,R 

. 
( )yQ i

denotes the set of outputs 
r

y R with the same 

qualitative value  i, i.e.  

[ ( )] ( ) ( )k i k Q iy  y y   (3) 

Similarly, the input space partitioning results in 

discrete set ( )uQ l , { }ul N 0,1,...,M   and the set of 

faults is denoted by { }f 0 1 sN f ,f ,...,f . For all 

partitions, it is assumed that sets ( )Q i  (  i 0 ) are 

bounded and the remaining part of the signal space 

is (0)Q . For example, for state space quantizer : 

1

(0) \ ( ( ))
N

n
x

i

Q Q i


 R   (4) 

The injector 
1

 shown in figure 1 maps the 

qualitative value [ ( )]ku  to a continuous value. Since 

the qualitative value [ ( )]ku  represents a set, each of 

its elements can be assigned to output of the 

injector, that is 1([ ]) uQu  . 

The qualitative model describes a relation between 

all possible qualitative input sequences and all 

corresponding qualitative output sequences of the 

Q.S. 

[ ] ([ (0)],[ (1)],...[ ( )])T TU u u u   (5) 

[ ] ([ (0)],[ (1)],...[ ( )])T
S TY y y y  (6) 

Both of sequences of Eqs. (5) and (6) are 

indexed here with the time horizon T. An adequate 

model which generates the set  [ ]TMY  of qualitative 

output sequences has to fulfil the condition for all 

qualitative input sequences and faults and all sets of 

initial states. Such a model is called a complete 

model [1, 10]. 

[ ] [ ]M SY Y   (7) 

In this paper non-deterministic automaton is 

used as qualitative model. A non-deterministic 

automaton is defined as: 
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( (0))N ,N ,N ,L,z v wN z   (8) 

In which, z is the state vector of the non-

deterministic automaton, 
N

z ,
Nw and,

Nv denote the 

sets of qualitative values of states, qualitative values 

of outputs and qualitative values of inputs, 

respectively.  

The behavioral relation describes all possible 

successor states ( )k +1z and outputs w
k

of the 

system for a given current state ( )kz  and input v
k

 

at time instant k. 

: {0 1}L N × N × N × N ,z z v w    (9) 

Such a model is a generator of the set of all I/O 

sequences given the initial state 
( )0z

  and hence, a 

compact representation of the system behavior. In L, 

a one indicates that a transition is possible while a 

zero means that it is not [11]. It is shown that this 

qualitative modeling approach provides a complete 

model that is needed in qualitative observation task 

[3, 11].  Note that, in this paper the qualitative 

model is used for the state observer rather than the 

Q.S. 

The previous qualitative observers (which 

called pure qualitative observers in this paper) find 

all possible qualitative states which are consistent 

with observed qualitative input and output 

sequences [3, 11]. Since the inputs and outputs can 

only be measured qualitatively, and since a 

quantitative observer is used in our approach, the 

necessary signals are obtained by injectors (c.f. Fig. 

1). By our approach, we are able to adjust 

parameters of quantitative observer; such as error 

convergence rate, to satisfy our desired 

specifications. Since the overall obtained 

configuration for the proposed observer (the gray 

box in Fig. 1) forms a Q.S., it is replaced by a 

qualitative model. This qualitative model is a N.D.A 

and it is qualitative abstraction of the designed 

quantitative observer rather than the continuous 

variable system. Convergence of the qualitative 

estimated states is an important problem in the 

observation task. Hence, in the next section, this 

problem is investigated and we present coefficient 

conditions that imply convergence of Q.E.E.  

3. Estimation Error Convergence 

In this section the conditions for convergence 

of Q.E.E are derived. In our approach, at first step 

we design a quantitative state observer. For 

simplicity in this paper, the continuous-variable 

system is considered as a linear system; that A, B 

and C are state parameters. A Lunberger observer is 

used for quantitative observer as [14], 

 

 

                              

              

   
                      

(10) 

where x̂  is the estimated state, y is system output, 

and ŷ is the observer output, and K is the observer 

gain matrix. Here we design K so that the observer 

is asymptotically stable. Hence quantitative 

estimation error;  
ˆ( ) = ( ) - ( )t t te x x ,  tends to zero, 

whenever   t tends to  ; i.e.  

( ) 0 t e   when   t    (11) 

A qualitative model for observer of Eq. (10) is 

derived by an abstraction algorithm [11]. This 

qualitative model is described by a N.D.A. which is 

the core of our qualitative state estimator (c.f. Fig 

1.). The obtained qualitative observer has two 

noticeable differences with the quantitvie state 

observer:  The observer inputs are qualitative 

signals, and the describing model is a qualitative 

model. 

To investigate the convergence of the 

estimated qualitative states, we assume that all 

partitions are rectangular and equal distance. In 

addition, we define qualitative state convergence as 

follows.  

Definition: The qualitative state
Q

i converges to 

qualitative state
Q

j if the distance between two 

qualitative states; that is denoted by
( )d

qij
t

, is 

uniformly ultimate bounded (U.U.B.). In this 

definition 

t) (t) (t)d ( M Mq Q Qij i j
  

(12) 

where i
Q

M

and  j
Q

M

are the center points of 
Q

i  and 
Q

j , respectively. Since it is assumed that all 

partitions are equal distance, then Eq. (12) is a 

distance function. In addition, 
( )

qij
d t

 is U.U.B. if 

and only if, 

T  , 0      s.t. t T    )
ijqd ( t    (13) 

Theorem: If estimation error in a quantitative 

state observer converges to zero asymptotically, 

then in qualitative observer, the qualitative 

estimated state converges to the actual qualitative 

state. 

Proof: In qualitative observer (c.f. Fig. 1), 

inputs are qualitative signals, ][u and ][ y  respectively. 

we assume that )(tu  is a pure discrete signal. (This 

is true in many cases such as discretely controlled 
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continuous systems that are found in many 

technological fields [9]. In addition if )(tu is not 

discrete, a bounded term will be added in Eq. (14) 

and therefore the value of  in Eq. (15) will be 

changed.) Thus we rewrite the Eq.  (11) as follows. 

( ) ( ) ( ) ( )t t t    e A KC e K y  , 0t   (14) 

where )()()( ttt  yyy  and )(ty  is output of the 

injector. For injector we have: 

)]([)( tt yy 
    )(ty                (15) 

The quantitative state observer is assumed 

asymptotically stable. It means that all eigen-values 

of ( )A KC have negative real parts.It is resulted that 

( )te
 is U.U.B. and then for each initial value (0)e , 

T , 0   s.t. ( ) Te  , t T  (16) 

T is considered as convergence time of quantized 

observer and in qualitative abstracting of the 

observer the sampling time,Ts , must satisfy 

condition 
T Ts

. By this consideration the 

qualitative observer is built for converged 

quantitative observer and we are sure that estimation 

error for obtained qualitative model is bounded.   

Now by definition 1, qualitative estimation error, 

ˆq
xx

d , is defined as distance between actual 

qualitative state [ ]x , and estimated qualitative state 

[ ]x̂ ; that is, 

ˆx xˆ
(t) (t)

Q Q
 q

xx
d M M  (17) 

where x
(t)

Q
M

 and x̂
(t)

Q
M

 are center points of 

[ ]x and [ ]x̂ , respectively. By using triangular 

property of norms,   

ˆx xQ Q
ˆ

(t) (t) (t) (t) (t) (t) .ˆ ˆ     q
xx

d M Mx x x x  (18) 

By considering property of qualitative 

modeling, it is seen that the first and the third terms 

in right hand side of Eq. (18) are bounded. 

Similarly, it is resulted that the second term is also 

bounded. Therefore ˆq
xx

d
 is U.U.B and by Eq. (13), 

the qualitative estimated state converges to the 

actual qualitative state.   

We call convex convergence set of Q.E.E as 

convergence set.  As it is well-known, increasing 

observer gain matrix K, moves poles of observer far 

from the imaginary axis in s-plane. This fact leads to 

increasing convergence rate of quantitative observer 

and reducing convergence time. On the other hand 

increasing K leads to increasing uncertainty 

introduced by injector in Eq. (14) and convergence 

set respectively, that leads to additional estimated 

states. Thus in designing the quantitative observer, 

this trade off must be considered.  

In next section the proposed qualitative 

observer is simulated for a two-tank system and 

some cases are considered for further illustration. 

4. Illustrative Example 

In the following, the proposed observer is 

simulated on a two-tank system which is depicted in 

Fig. 2.  The   system   behavior is    described by the 

following differential equations [11].  

1
1 2 1 2

1
( ( ) sgn( ) 2 )in v

dh
q P t S h h g h h

dt A
      

2
1 2 1 2 2

1
( sgn( ) 2 2 )v v

dh
S h h g h h S g h

dt A
        

(19) 

 

Fig. 2. Two tank system 

 

Fig. 3. State partitions of the two tank system. 

Where  1 2( , )h hx    is   the system    state 

vector and model parameters are given in table 1. 

The pump can work in 3 modes, "off", 

"medium power", and, "full power". Thus the input 

qualitative values are "off", "medium", and "full ". 
For qualitative modeling we use the Quamo 

Toolbox [12]. In this modeling the continuous 

system state space is partitioned as shown in Fig. 3. 

The level of tank 2 is considered as output of the 

system and consequently with the same partitioning 

of 2h .  

Here the quantitative observer is considered as a 

Leunberger observer. To investigate the effects of 

the parameters of quantitative observer and 
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sampling time of qualitative modeling procedure, 

four cases are considered as follows. 

 s s5T     and     {-1 ,-1}P   

 s s5T      and     {-0.1 ,-0.1}P  

 
s s10T     and     {-1 ,-1}P  

 
s s10T     and     {-0.1 ,-0.1}P  

Table.1. 
Parameters of the tank system 

Description parameter value 

Cross-section area of each tank A -2 2
1.5 10 m  

Cross-section of the valves vS  2
.00002m  

Input flow if the pomp is on inq  4.5 / minl  

The gravity constant g 2
9.81 /m s  

 
Where sT  is sampling time and P denoted pole 

of the observer. To simulate these four cases an 

input sequence is applied to the plant model and 

corresponding qualitative output and actual 

qualitative state of the plant is computed. The 

obtained results are shown in Fig. 4 for s s5T  , and, 

in Fig. 6 for s s10T  , respectively. 

 Estimated states for cases 1 and 2 are depicted 

in Fig. 5. Comparison of results with the actual 

states shows that in both cases the observers can 

estimate qualitative states completely. In addition, 

for case 1, fewer spurious states are generated rather 

than pure qualitative observer. But observer of case 

2 generated more spurious states than the pure 

qualitative observer. By comparison observer poles 

in case 1 and 2, it can be seen that, for case 1 poles 

are chosen properly so that the convergence time 

T is less than
sT . But for case 2 convergence time of 

the observer is increased by choosing 

{-0.1 ,-0.1}P , so that the observer has not been 

converged for s s5T  . The same investigations are 

repeated in case 3 and 4 for s s10T  (c.f. Fig. 7). The 

obtained results show that all observers are not 

complete, (transient state in 50s cannot be estimated 

correctly by all observers). This is due to 

increasing sT
, that leads to loss of transient modes of 

the main system and quantitative observer in 

obtained qualitative models. In fact, changing the 

sampling time is not a good solution to satisfy 

convergence time condition, and in many actual 

cases, it is impossible as well. By comparison Figs. 

6-c and 7-c, it is seen that the observer of case 4 has 

generated less spurious states than the observer of 

case 2, because the convergence time condition is 

satisfied better than for case 4.  

By considering these four cases, it is resulted 

that convergence time condition must be satisfied by 

adjusting parameters of quantitative observer and in 

the obtained qualitative observer must be complete. 

A good experimental criterion that can be used is 

10 5

s sT T
T                 (20) 

5. Conclusion 

In this paper a method is presented to design a 

qualitative state observer. Our method uses a 

quantitative observer as the core of designed 

qualitative observer. By this method, we are able to 

use the advantages of quantitative observer deign 

methods; such as flexibility in convergence time. In 

addition, the necessary signals can be measured 

qualitatively. The main result of the paper presents 

the coefficient conditions for existence of the 

proposed observer. The simulation results show that 

adjusting parameters of quantitative observer leads 

to reduction of spurious states and time of state 

estimation that both are important in some 

applications such as fault diagnosis systems. Using 

nonlinear quantitative observers and refining of state 

space-output space partitions are interesting topics 

that can be studied in the feature works. 
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